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DURATION OF THE FREEZING OF BODIES WITH VARIABLE TEMPERATURE 

OF THE MEDIUM 

V. P. Koval'kov UDC 536.2 

The article contains an analysls of the applicatlon of the integral method of ther- 
mal moments of zeroth order in determining the duration of freezing of bodies with 
simple shape when the temperatures of the cooling medium is variable. 

Approximate analytical solutlons of unldimensionalStefan-type problems for determinlng 
the duratlonof processes of nonsteady heat conduction are conveniently found by uslng the 
so-called integral methods [1]. To these also belougs the method of thermal moments of 
zeroth order [2]. The application of this method to problems with phase transformations 
at constant temperature of the medium was studied, e.g., in [3, 4]. The essence of the 
method is that the initial integral relation is obtained as a result of integrating the 
principal differential equation of heat conductiontwicewith respect to the space coordin- 
ate and once with respect to time. Into this relation we then substitute the equations of 
the temperature distribution profiles (invariant to shifts of the front of phase transforma- 
tion) and the regularlty of change of the cooling (heating) impulse on the surface of the 
body, determined as the area in coordinates temperature vs time between the lines of tem- 
perature change at the end of the investigated region (body). 

The method of thermal moments of zeroth order may also be applied to determining the 
time of motion of the fronts of phase transformation in bodies of simple shape when the 
temperature of the medium is variable. Although it is expedient to use the Integral state- 
ment of the problem [4], we demonstrate below how to obtain the initial Integral relatlon 
of the thermal moments from the differential statement of the problem because the method 
itself is relatively little known. 

Let us examine the problem of the cooling of bodies with simple shape (sphere, un- 
bounded cylinder, and plate) with phase transformations 

OT (x, "c) 0 ( ~, iT) r (x) OT (x, "~) , 0 ~ x ~ I; c (T) o) (x) a ~  a-"; ax 

T (x 0) = To (x); 

OT(O, ~) -_0; 
ax 

~z ('0 (T (Z, "0 - -  T~ ('0) = - -  ,~ ( r  (l, "0) 
aT (I, "0 

0x 

( I)  

(2)  

(3)  

(4) 
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aT(x, ~) <0,  O~x~<~l, x~O.  (5) 
Ox 

To fulfill condition (5) that the direction of the heat flux be constant, it suffices that 
dTc/dX~0 for m ~0, dTo/dx~0. 

After the first integration with respect to x weobtalnat some instant T, taking (3) 
into account, that 

, OT (x, x) 1 : or (~, ~) C (T) J (~) d~. ( 6 )  
a~ = ~ (Ti + (~) a~ 

0 

If we integrate b o t h  sides of (6) w i t h  respect t o  x once more, we find 

x g 

dy 
T(x, ~ ) =  Y ~(T) co(y) yC(T)  o(~.) 

0 0 

aT (~, ~) d~ + G (% (7) 

Equation (7) may be written in the form of a double integral 

T(x, "0= f f  o(~)C(T(~, x)) OT(~, "~) dyd~+C=('O 
+ (y) ~, (T ~, '0) o~ 

w i t h  r e s p e c t  t o  t h e  r e g i o n  S[O ~ y  ~ x; 0 ~ ~ ~ y] .  Th i s  d o u b l e  i n t e g r a l  i s  a d i f f e r e n t  
form of the multiple integral 

x x 

~ (~::,.,(,,::) ..,- ~,. d~+ C~. (8) T (x, ,O = S C (T) o(~) _ ~  ( ~ dy 

o 
After having determined C2 from condition (4), we obtain flnally for any x E [0, l]: 

l " I �9 dy aT ( dy. d~- C(T)~(~) T (x, x) -- T c (~) = j C (T) + (~) 
o ~ o ~ (9) 

and hence  f o r  t h e  c e n t e r  o f  t h e  body (x = O) a t  any i n s t a n t  T: 
l 1 

T (0, ~) - -  Tc (x) = - -  C (T) o (x) ~ r162 (x) r ~, (T) r (y) 
0 x 

Thus one integral equation (9) with the inltlal condition (2) corresponds to the system of 
differential equations (1)-(5). 

We integrate both sides of Eq. (10) with respect to time: 

~f ~f l l 
aT 1 

0 0 0 x 

The geometric interpretation of the left-hand side of Eq. (ii) with condition (5) is obvious: 
it is the area in coordinates T--T between the llnes of change of temperature T(0, T) and T c 
(T) within the time Tf. In view of the fact that the function T - T(x, z) is continuous in 
the region of its determination, the order of integration on the rlght-hand side of (ii) may 
be changed :  

:~:o( 0 F ~(T)~(y )  " O: 
0 0 x 

The e x p r e s s i o n  i n  t h e  o u t e r  p a r e n t h e s e s  i s  t h e  i n t e g r a l  depend ing  on t h e  p a r a m e t e r ,  x .  With 
any fixed x ffi x, this integral is obtained by the substitution of T(x,, x) - T,(T) for T 
from the integral 
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r,(0) t 

~ (r,, x,/ ~ (O + ~ (T,, x,, u) ~ (U) 
r. (~ p x. 

where T,(0) = To(x,). 

Expression (12) i s  c o r r e c t  fo r  any 0 ~  x ~  l ,  i t  t h e r e f o r e  determines  the  pa ramet r i c  
s p e c i f i c a t i o n  of  the  f u n c t i o n ,  and the  parameter  x i s  conta ined  in  the  i n t eg rand  as we l l  
as in theintegratlon limits. Consequently, the following function is determined: 

rI~') 
r (x) = C (T) I (T, x) ST, (13) 

' r ( x , z f ~  

I 1 ~ dy 
I (T, x) r (T, x) r (1) + X (T, x, y) r (y) ' 

x 

where 

and relation (11) may be written as follows: 

'r l T0(x) 

Q----" S (T(0' "O--Tc('o)ax = S co(x) J' C(T)I(T, x)Srdx~_aH. (14) 
o o T(x,~f~ 

Thus we integrated (1) twice with respect to x and once with respect to z, taking all 
the boundary conditions into account. We obtained the integral relation (14) which can be 
r e so lved  r e l a t i v e  to  t he  d u r a t i o n  Tf i f  we know the  r e g u l a r i t y  of the  change of a rea  of  the 
c o n f i g u r a t i o n  ~ (Tf ) .  On the  o the r  hand, l i k e  wi th  a l l  i n t e g r a l  methods,  we have to s p e c i f y  
the  tempera ture  d i s t r i b u t i o n  p r o f i l e s a c r o s s  the  t h i cknes s  of the body t = t (T ,  x,  y) which 
are  s u b s t i t u t e d  i n t o  the  f u n c t i o n s  a (z )  = a (T(y ,  z))  and l ( T ( y ,  z))  i n s t e a d  of  T f o r  the  
purpose of  ob t a in ing  the dependences a(T,  x) and I (T,  x,  y ) .  

For g r e a t e r  l u c i d i t y  the  i n t e g r a l  r e l a t i o n  (14) upon i t s  c o n s t r u c t i o n  may be r e p r e -  
sented  by S t i e l t J e ' s  double i n t e g r a l  over the  r eg ion  a [ 0 ~  x ~ l ;  T(x, z f ) ~  T < To(x) ] :  

Tf 
~ ,f (T (0, "r) -- T e (~)) dr = .I.f I (T, x) #Q (T, x) ~ AH. (15) 

0 (o) 

Relation (15) as the integral form of Fourierts Law of heat conduction [4] has an anal- 
ogy with  the  law of  conse rva t i on  of momentum in  mechanics:  fl i s  the  i n t e g r a l  impulse of  f o r c e  
whose analog i s  the  tempera ture  d i f f e r e n c e  , andAH i s  the  "momentum" of hea t  a g a i n s t  the  t h e r -  
mal r e s i s t a n c e s  or  the  moment of  the  amount of hea t  of ze ro th  o rder .  In f a c t ,  the  i n t eg rand  
in  the double i n t e g r a l  i s  the  product  of  the  amount of hea t  d2Q = C(T)m(x)6Tdx, r e l e a s e d  from 
an e lementary  l a y e r  wi th  volume e(x)dx when the  tempera ture  in  i t  i s  lowered by 6T, and the  
i n s t an t aneous  thermal  r e s i s t a n c e  I (T,  x) from t h i s  l a y e r  to  the  coo l ing  medium a t  the  i n -  
s t a n t  when the mentioned lowering of the  tempera ture  occurs .  

The thermal  impulse ~ expresses  the  measure of the  thermal  e f f e c t  on the  body, and AH 
i s  the  change of  t he  t h e r m a l  s t a t e  of  the  body under t h i s  e f f e c t .  Depending on the  d i r e c -  
t i o n  of the  hea t  f l u x ,  the  impulse fl may be taken t o  be p o s i t i v e  or  n e g a t i v e .  From the  
thermodynamic p o i n t  of  v iew ~ < 0 and AH < 0 upon cool ing  of bodies .  But s ince  t h e i r  s igns  
always coincide, it is expedient in thermophyslcal calculations to take the temperature dif- 
ference at ~ as positive, and correspondingly to assume that AH > 0. 

Using the above-mentloned analogies, we can easily construct the integral form of stat- 
ing the problem in the form of relation (15). It expresses the theorem of additivity of 
the magnitude AH. To each element of the area of the region d2u = 6Tdx corresponds an ele- 
mentary amount of heat released into the environment d2Q whose "momentum" against the re- 
sistance I into the environment is determined as d~H = IdaQ. Here, daH is always correlated 
with the corresponding increase of the thermal impulse of the effect, i.e., 

" d 2 ~ 6 ( T ( 0 ,  x) --  Tc (z)) dz = l(T, x)#Q(T, x)-~-dZH. (16) 

If i = invar or X = l(x) and a = invar, the thermal resistance I = l(x) and relation 
(15) are greatly simplified: 
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where 

"~.f l 
__--___ .[ (T (0, ~) - -  Tc ('r)) dz  = ] I (x) dO (x) ---- AH, 

o o 

To (x) 

r(x.~ f~ 

(17) 

The integral relation (15) may be used for determining the length Tf of the process 
of cooling of the body. The approximation of its left-hand side is possible if we know the 
change of temperature of the center of the body T(0, T). This is particularly convenient 
in problems with phase transformations. Then, with the nature of the change Tc(T) speci- 
fied, we can determine the time dependence of the change of the area fl between the lines 
of change of these temperatures in coordinates T--z. In other cases, when the problem is 
stated so that Tf can be determined, it is more convenient to use relation (15) in the 
form of the first differentials of fl and H with subsequent integration. In this case the 
time T is treated as the sought function, and the temperature as the independent coordinate 
since the temperature distribution profiles are being specified. 

The momentum of the heat AH is an additive magnitude only over the region u, i.e., 
along the path of the heat flux. Along the surface u(l) the magnitude AH is not additive. 
From the thermodynamic point of view H becomes a singular function of state in the case 
of the equilibrium process of cooling of the body, when Bi § 0. With arbitrary dependences 
C(T), I(T), and a(T), the value of AH depends only on the initial temperature (To) and the 
final temperature (Tf) of the body 

l T. l 

A[ - /=  ~/(To) - -  [ / ( T f )  = ~,(T) co(x) 0)(9)  

o Tf x 

The property of additiveness of relation (15) over the region ~ enables us to go  over 
easily from the nonclassical statement of the problem of the freezing of bodies to the clas- 
sical statement with the Stefan condition. In this case the expression for AH contains 
additionally the component of the heat of phase transformation 

0 

a~v = .i Qp~(~)I(T, ~)d~. ~19) 
l 

Using the theorem of the addltiveness of the impulse, "the momentum" of heat, i.e., 
relations (15)-(17), we can approximately solve the problem of the duration of the processes 
of nonsteady heat conduction, neglecting any of the factors of thermal influence and esti- 
mating the error due to such a simplification according to the possible deviation of the 
function AH. It is expedient to use the known theorems of comparison [5]. If C, A, a do 
not depend on T and T, then in resolving the Integral relation (15) we need the temperature 
distribution profile with respect to x to be specified only at the final instant Tf, other- 
wise the approximation of the temperature profiles for any z is indispensable. 

In order to illustrate the method of solving the problem of the freezing of bodies by 
using relation (15), we will examine the plane unidimensional single-phase problem of Stefan 
in the classical statement with boundary condition of the first kind, when the front of the 
phase transformation moves into the interior of the space at the constant speed v = uK. In 
that case the exact solution of Stefan [6] for x = 0 on the surface of the body is known 

Then, having T(x, 0) - Tp, we find in the layer with thickness dx during the entire time T: 

dH = (C (Tp - -  T (x, g ) ) + Q p )  x dx. 
(21) 

Integration of (21) from x = 0 t o  ~ = v ~ ,  taking (20) i n t o  account, yields 
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C - ~  exp,, a / 

e o t h e r  hand,  i n  accordance  wi th  (20):  

. 1 ) - - ' ~ ) ,  (22) 

C 

whose i n t e g r a t i o n  l eads  to  an e x p r e s s i o n  t h a t  i s  i d e n t i c a l  wi th  (22) .  Thus we v e r i f i e d  t ha t  
the integral relation (15) is exact. 

We will demonstrate the application of the method to the approximate solution of the 
problem of the freezing of bodies with simple shape stated as follows: 

0 ( 0T 1 o(x) o r  = a ~(x) O ~ x ~ l ;  
O *  Ox ~ - ~ x  ' (23a) 

T(x, 0) =Tp = T(0, x); (23b) 
x OT(t,.~) 

~ ( T s ~ ) - - r c ( ~ ) ;  423c) 
Ox 

I l L  or([ ,  ~) d[ (23d) 
Ox = QP dr ' 

when the t empera tu re  of  the  medium d e c r e a s e s  a t  c o n s t a n t  speed b - - -dTc /dr  > 0 accord ing  
to  the  r e g u l a r i t y  Tc(T) = Tco--bx;  Tco E T c ( 0 )  ~ Tp. Then f o r  any x we have ~ = (T_--Tco) .  
x + b /2  x a �9 We s p e c i f y  t h a t  t h e  t empera tu re  p r o f i l e  a t  the  end of  the  f r e e z i n g  i s F l i n e a r  

7" (x) = 7'p - (~p - r~) 
0~X 

~xl+ k (24) 

Determining 

I (x) -- - -  

l 

1 1 l (l~ dy 
~o (0 + T j o,(v) x 

and dQ(x) l, (C(Tp--T(x))  + Qp)t~(x)dx, we f i n d  . 

l 

AHm ,I* I(xleQI(x) ---~ Op/'~ (2 -L-2x/~ Bi Bi) + 12(TP3a (/ --~-- Te/ (1 + +Bi)Bi) (251 

0 

Then from the relation fl-AH we obtain finally the formula of the duration of complete freez- 
Ing of bodies wlth simple shape 

xo = 2E(F + V FZ+ 2bE )-t, (26) 

E - Optz (2 + Bi) 
2:~ Bi 

where 

F = Tp --  Too-- bD; 

+ D (Tp ~ Teo); D = .  l~" (3 + Bi) 
3a ff + 1) (I +Bi) 

With b = 0, t he  known formula of  the  t ime of  f r e e z i n g  of  b o d i e s  wi th  c o n s t a n t  T f o l l o w s  
from 426) [3 ] .  c 

The e f f e c t  of O~ i n  426) was taken accurate ly  i n t o  account, therefore the e r ro r  of t h i s  
formula depends only  on the  e r r o r  in  de termining  the  "momentum" of  the  hea t  due to  the  hea t  
c a p a c i t y  of  the  f rozen  zone, when the  p r o f i l e  T(x) i s  s p e c i f i e d  fo r  the  end of  the  f r e e z i n g .  

In the  case  of  the  Rudolf  Planck problem, when i n s t e a d  of  the  sys tem of  equa t ions  423) 
only Eq. (23d) is solved, i.e., C § O, the following exact relation follows from (26): 
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Ts I t 

Fig. 1. Results of the calculation of 
the soil surface temperature in the winter 
period with constant speed of the freezing 
front: 1) exact Stefan solutlon of (20); 2) 
by formula (28); 3) by formula (27); a) 
moist loam; b) sandy loam; c) sand. Ts, ~ 

b Qp(2-b- Bi) v~ ,- (27) 
~/Bi 

establishing a quadratic correlation between the slmultaneously existing constant speeds b 
and v. However, when C is taken into account, the simultaneous constancy of these speeds 
does not apply any more. Thus the equation of the correlation of speeds (27) applies only 
for large Ko. 

To verify the accuracy of formula (26) we will examine a numerical example from physi- 
cal geocryology. It is known that the front of the seasonal freezing of the soil, having a 
mean annual temperature close to Tp = 0~ moves in the course of almost six winter months 
at the practically constant speed v. We determine the change of the soil surface temperature 
directly under the snow cover by differentiating (25) with respect to z for T = Tf, Bi + ~, 
f = i, and taking into account that ~ = --vT and d(AH)]dT = d~/dz = Tp--T s. Then 

3 Q p v ~  
Ts =Tp (28) 

Figure 1 presents the results of the comparative calculation of the change of the soll 
surface temperature T s by formulas (20), (27), and (28) for three types of soil: a) loam 
with v = 1.5- 10 -4 m/h; b) sandy loam with v = 3.5" i0-4; c) sand with v ffi 5" 10 -4 . The 
value of Ko for zf = 6 months was 26.0, 5.6, and 3.1, respectively. In the case (a) with 
large values of Ko, the three solutions practically coincide. Formula (27), obtained for 
the linear profile T(x), yields the largest divergence compared with the exact solution of 
(20) in the case (c): 5Z. 

NOTATION 

x, linear space coordinate with the origin at the center of the sphere, of the unbounded 
cylinder or plate; re(x) = I, 2wx, 4~x 2, for the plate, cylinder, and sphere, respectively; 
f = 1, 2, 3, shape factor of these bodies; l, half-thlckness for the plate and radius for the 
cylinder and sphere; ~ and v = dE/dT, depth and speed of freezing of the body, respectively; 
T, Tf, duration of the cooling of the body; T, temperature; T temperature of the medium; 
T , temperature on the surface of the body; T , temperature o~ the phase transformation; b, s p 
rate of the temperature decrease of the medium; C and A, volumetric heat capacity and 
thermal conductivity, respectively~ of the substance of the body in the frozen state; QD, 
volumetric heat of the phase transformation; a, heat-transfer coefficient on the surface-of 
the body; Bi - a~/A; Ko - Qp/C(Tp--Tc) , Kossovich number. 
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LIQUID BOILING PROCESS IN ROTATING VESSELS AND CHANNELS 

S. I. Sergeev, O. M. Popov, 
and I. P. Vishnev 

UDC 536.423.1:531.15 

Results of visual observations of water boiling in rotating vessels and channels 
are presented. The existence of various forms of nucleate boiling is established. 
Simplified calculations of single phase and boiling liquid thermal convection are 
performed. 

In order to construct high-power electric generators with rotors cooled by cryogenic 
liquids [i], information is required on the motion of heated and boiling liquid in rotating 
cavities and channels of various configurations. Reviews of studies of the boiling process 
in rotatint vessels can be found in [2-5]. Visual observations of liquid flow in such ves- 
sels were described in [6]and other studies. In view of the shortcomings and contradictions 
of the available studies, the present authors carried out test stand studies in which the 
convection and boiling of heated water in rotating glass vessels and channels of various form 
were observed (Fig. 1). Test stand parameters wereas follows: radial distance from bottom 
of vessel or channelwall to axis of rotation rz = 12 cm, radial distance from edge of ves- 
sel or beginning of channel to axis of rotation rl = 2 cm, channel diameter D = 0.3 or 0.5 
cm, vessel diameter 4 or 7 cm, heater, externally heated sleeve around channel section L2 - 
8 cm long, or 3 cm diameter plane heater 4,-,ersed to bottom of vessel, occupying from 18 to 
56% of bottom area. Experiments were performed both with and without transparent screens 
to protect the rotating vessels and channels from cooling by the air through which they 
moved. The screenless experiments produced additional heat losses, but simplified observa- 
tions. Angular rotation frequency ~ 157 sec -I (or ~ 1500 rpm). This corresponded to a 
maximum centripetal acceleration of ra~2~3 �9 10 s m/see s or relative acceleration of G - rl- 
~Sg-L ~ 300, and an excess pressure produced by centrifugal forces of P+ = 0.50~ s x (r~-r~) 
~0.17 MPa, with increase in the water boiling point at the bottom of the vessel to 130~ 

Visual observations and photography of the motion of vapor bubbles and plastic shavings 
with a density close to that of water were carried out under stroboscopic illumination. The 
rotation frequency and thermal heating power Q were measured. 

Boiling in a free volume was studied in a glass vessel 9 cm high wlth axis oriented 
along the normal to the axis of rotation (8, Fig. i), with water supplied through collector 
4. 

Observations of the convective motion of the single phase liquid not heated to the 
boiling point (Q ~.50 W) were performed under normal conditions G > 30 and Ra w ~ Ds~2r2BT+ 
(vu)-Iool0 s,- i0 I~ In this case it was evident from the motion of the suspended particles 
that the usual (in the absence of rotation) two-loop convection with a flow of hot liquid 
departing from the center of the heater did not occur. Instead, a one-loop circulation 
convection was established with cold flow directed along the pressure wall of the vessel to 
the bottom and heater located there, with heated flow directed along the pressure wall of 
the vessel to the bottom and heater located there, with heated flow directed from the heater 
along the nonpressure wall toward the axis of rotation (1, Fig. 2). The direction of the 
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